embedding measure spaces

نویسندگان

m.r. koushesh

isfahan university of technology

چکیده

‎for a given measure space $(x,{mathscr b},mu)$ we construct all measure spaces $(y,{mathscr c},lambda)$ in which $(x,{mathscr b},mu)$ is embeddable‎. ‎the construction is modeled on the ultrafilter construction of the stone--v{c}ech compactification of a completely regular topological space‎. ‎under certain conditions the construction simplifies‎. ‎examples are given when this simplification occurs‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Embedding measure spaces

‎For a given measure space $(X,{mathscr B},mu)$ we construct all measure spaces $(Y,{mathscr C},lambda)$ in which $(X,{mathscr B},mu)$ is embeddable‎. ‎The construction is modeled on the ultrafilter construction of the Stone--v{C}ech compactification of a completely regular topological space‎. ‎Under certain conditions the construction simplifies‎. ‎Examples are given when this simplification o...

متن کامل

Learning in Hilbert vs. Banach Spaces: A Measure Embedding Viewpoint

The goal of this paper is to investigate the advantages and disadvantages of learning in Banach spaces over Hilbert spaces. While many works have been carried out in generalizing Hilbert methods to Banach spaces, in this paper, we consider the simple problem of learning a Parzen window classifier in a reproducing kernel Banach space (RKBS)—which is closely related to the notion of embedding pro...

متن کامل

Embedding normed linear spaces into $C(X)$

‎It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$‎. ‎Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology‎, ‎which is compact by the Banach--Alaoglu theorem‎. ‎We prove that the compact Hausdorff space $X$ can ...

متن کامل

Banach Spaces Embedding Into

Our main result in this paper is that a Banach space X embeds into L, if and only if l~(X) embeds into Lo; more generally if 1 _-< p < 2, X embeds into Lp if and only if lp (X) embeds into L~,.

متن کامل

Embedding into Rectilinear Spaces

We show that the problem whether a given finite metric space (X, d) can be embedded into the rectilinear space R m can be formulated in terms of m-colorability of a certain hypergraph associated with (X, d). This is used to close a gap in the proof of an assertion of Bandelt and Chepoi [2] on certain critical metric spaces for this embedding problem. We also consider the question of determining...

متن کامل

Banach Spaces Embedding Isometrically Into

For 0 < p < 1 we give examples of Banach spaces isometrically embedding into Lp but not into any Lr with p < r ≤ 1.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

جلد ۴۰، شماره ۱، صفحات ۱۲۵-۱۵۵

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023